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NUMERICAL SIMULATIONS FO THE STRUCTURE OF
SUPERSONIC SHEAR LAYERS

I. INTRODUCTION

Supersonic shear layers are inherently more stable than their subsonic counterparts, and

this results in the practical consequence that there is less mixing. Adequate mixing in supersonic

flows is, however, an essential requirement for propulsion devices designed to provide chemical

reactions, and heat release in supersonic streams of air and fueL For this reason, an understanding

of the behavior of supersonic shear layers and jets is a necessary prerequisite to setting criteria for

the control of mixing and energy release in supersonic flows.

This paper presents a numerical investigation of the role of selected inlet flow variables

on mixing and stability in a bounded, unforced supersonic shear layer. More specifically,

two-dimensional time-dependent simulations of the mixing of two supersonic parallel streams of

gas (initially separated by a splitter plate) are performed to determine the effects of the density,

velocity, and pressure differences between the streams. The paper reports and compares the relative

qualitative differences in mixing that occurs and the types of coherent structures that are formed.

In these simulations, we have tk particular advantage of the fact that computations can

extend the work of analysis into the nonlinear regime for even broader ranges of parameters, and

yet the flow conditions are still idealized and easily specified and varied. Physical properties can be

measured and shocks and other flow structures can be detected, all of which are difficult to observe

experimentally. As with idealized analytical solutions and basic fluid experiments, the purpose is to

gain insight into some of the fundamental parameters controlling the behavior of the flow and

present guidelines for when to expect more mixing and for choice of sensible but very expensive

three-dimensional computations.

Mamcanp approved April 17. 1990.



I. BACKGROUND

Subsonic shear layers have attracted investigators for many years. Brown and Roshko 2

made a fundamental breakthrough by discovering that shear layers form discrete large-scale

structures. These structures can become relatively large and roll up in a coherent manner that greatly

increases the mixing surface. It was later shown that the growth rate of the layer is governed by the

pairing of these structures. Subsonic jets and shear layers are naturally unstable and usually lead to

this large-scale mixing. The higher the Mach number, the longer it takes for a jet or a shear layer to

become unstable, thus reducing the amount of mixing in a given time and distance. At high Mach

numbers, the mixing is substantially reduced. With growing interest in supersonic propulsion

systems and hypersonic airbreathing vehicles, there is an immediate need to understand the basic

mechanisms causing the reduced mixing and for overcoming the apparent limits. The physics of

supersonic shear layers is presently under intense research 3-8.

In subsonic shear layers, the basic method of relating the different properties of the

streams is to normalize with respect to the high velocity stream. In supersonic mixing, however,

large changes in the density ratio can cause the low Mach number stream to have a greater velocity

than the high Mach number stream. The basis for normalization is thus not clearly defined for

supersonic shear layers. Recent studies2 -8 have attempted to use the 'convective Mach number' as a

normalization parameter in one way or the other. The definitions of the upper and lower convective

Mach numbers (for equal pressure cases) are3

U, - UC UC - U,

Ma 1  '' a.,

where Uj and U2 are the free stream velocities of the upper and lower streams and Uc is the

convective velocity of the structures (assumed to be constant) . The quantities aI and a2 are the

sonic velocities of the two streams at the inlet condition. For the overexpanded (faster stream at a
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lower pressure) and underexpanded cases, the inlet parameters are replaced by the conditions of the

two streams where they reach static pressure equilibrium after undergoing rarefaction and

compression.

The relation between Mc,I and Mc,2 is traditionally obtained by requiring that the total

pressure of the two streams in the convective frame be equal 3 . This originates from a well-known

subsonic flow argument, which state that there exists a stagnation point between two structures that

must be stable, so that the pressures at that point must balance. Equating the stagnation pressures of

the two streams produces an estimate of the convective velocity of the structure.The above argument

was subsequently applied to supersonic flows by Papamoschou and Roshko3 , who assumed that

the flow comes to rest isentropically at the stagnation point. Hence, no shock-wave losses were

accounted for. If the upper and lower streams both have the same ratio of specific heats, then the

velocity of the convected disturbances is given by

U=a, U2 + 2U
=+ a2 (2)a1 + 2

and there is just one convective Mach number,

M = Me =M

Recent measurements of Papamoschou 9 have, however, shown that the convective Mach numbers

corresponding to each side of a shear layer (Mc, I and Me,2 ) are very different, thus contradicting

the above isentropic model of structures which predicts that they are equal or very close.

Spark Schlieren photographs 3 "4 have shown that the growth rate of supersonic shear

layers is significantly less than that of incompressible shear layers layers with the same velocity

and density ratios between two mixing streams. The drastic reduction in growth rate has been

correlated to Mc as defined above. The experimental measurements3 show that the ratio of the
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growth rate of a supersonic shear layer to the growth rate of an incompressible shear layer, (with

the same velocity and density ratios), decreases as Mc increases. This growth rate decreases rapidly

in the range Mc - 0.4 - 0.5. The relative reduction again levels off as Mc exceeds unity. Recent

measurements in supersonic shear layers4 -6 also confirm this observation. Linear inviscid stability

analysis has shown7 a similar correlation between the ratio of maximum growth rates of stability

waves of supersonic and incompressible shear layers and Mc based on a frame of reference

traveling with the instability waves. For very small values of Mc , the reported ratio of the growth

rate of a supersonic shear layer to the growth rate of an incompressible shear layer is near unity.

Experimental studies of the details of the mixing layer in supersonic shear layers are

difficult as the mixing layer is complex when the streams are supersonic3 "4 . In addition, the

properties of supersonic shear layers are sensitive to small variations in the density ratio of the two

streams . This in turn can affect the optical diagnostic systems used to characterize the shear layers.

In such physical systems, numerical computations often provide missing information and behavior

trends. They have an advantage in that there are no interference effects present due to measurement

probes. In addition, they can simulate situations where the flow conditions are difficult or

expensive to achieve in the laboratory. However, as with any tool, there are important limitations to

what the simulations can do. The validity of the results depends on the computational domain

chosen, the particular algorithm used to solve the model equations and its implementation of the

initial and boundary conditions, the particular computer, and even the interpretation of the output

data.

Numerical simulations have been and are currently a powerful tool for investigating the

evolution of subsonic shear layers 1 0-12 . Due to the presence of complicated shock structures and

sharp gradients, accurate simulations of the supersonic shear layers warrant algorithms with

minimal numerical diffusion. Recently Guirguis et aL 1 have demonstrated the applicability of

4



numerical simulations to the study of fundamental processes in time-dependent two-dimensional

supersonic shear layers. The Flux-Corrected Transport (ECT) algorithm was used to study the

mixing and structure in supersonic shear layers. Soestrino et a. 13 studied the evolution of

instabilities and the physical processes associated with turbulent mixing of temporally supersonic

shear layers, i.e., shear layers with periodic boundary conditions in the flow directions. A

second-order total variation diminishing (TVD) algorithm was used. Numerical simulations of shear

layers in open domains were recently carried out by Lelei 4 . In this case, the two streams were

matched in static pressure but had different densities. The spatially evolving simulations presented

were forced at the inflow by adding a small normal velocity disturbance at the most unstable

frequency and its first two subharmonics. In the temporally evolving simulations, small amplitude

incompressible disturbances were added to the initial tangent hyperbolic flow profile. The behavior

of a plane free shear layer was studied by Tang et al. 15. A second-order ADI procedure as well as

a modified McCormack algorithm were used to obtain the solutions. Small-amplitude oscillations in

the normal velocity were found to grow as they convected downstream.

This work, following Guirguis et al.1 , is a first attempt to do a systematic numerical

parameter study of unforced and confined supersonic shear layers. The procedure is to select a base

case and vary the parameters around this case in a systematic way. The base case consists of two

(equal pressure) parallel streams of supersonic gas at inlet Mach numbers of 4.0 and 1.5,

respectively, flowing in a chamber bounded on the sides. The density, velocity, and pressure in the

two streams are varied so that equal pressure, underexpanded, and overexpanded systems are

considered. In the calculations presented here, however, the effective momentum thickness is

generally held fixed.

The present work extends the previous work in several ways. First, the parameters were

systematically varied to look for the regimes of enhanced mixing. The evolution of the major
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physical quantities in an unforced system is presented and these are used to analyze the dynamics

of the flow and the mixing characteristics. Two diagnostics, flow visualization and fourier

analysis, were used in this study to help analyze the computed results.The convective velocities

Mc, I and Mc,2 are directly measured from the predictions and compared to the isentropic value.

Since the same medium (air) was considered for both streams, for equal pressure cases, the density

variation of the streams was caused by temperature differences.

HI. THE NUMERICAL MODEL

The physical system we simulate, shown schematically in Fig. 1, is a confined mixing

layer formed by two streams of gases initially separated by a splitter plate. The flow domain is

bounded by two perfectly smooth parallel walls. The splitter plate is not included in the

computational domain and its trailing edge forms the left boundary of the computational domain.

For supersonic essentially inviscid flow calculations, this does not introduce significant errors as

there is no feedback of information upstream. The initially laminar streams have a top-hat axial

velocity profile at the trailing edge of the splitter plate and this profile is held constant during the

computations. The calculations are unforced in the sense that no external frequency is imposed on

the flow. These are idealized initial conditions since most laboratory tunnel flows are not laminar at

the Mach numbers considered in this paper.

For the calculations reported, the inflowing upper stream is always supersonic and at

a higher velocity than the inflowing lower stream. The lower stream can be either supersonic or

subsonic. By analogy to supersonic jets, an underexpanded shear layer is defined as the one in

which the pressure of the faster stream is higher at the entrance than that of the slower stream and

vice versa for overexpanded shear layers. Underexpanded, equal-pressure, and overexpanded shear

layers were considered. As shown in Figure 1, properties of the faster stream are denoted by
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subscript 1, and the slower flow by 2.

The numerical model used to carry out the simulations consists of the two-dimensional,

time-dependent inviscid conservation equations of mass density, momentum and energy density for

an ideal gas:

8p
a = -V.(pV) (3)

= -V.(pVV) - VP (4)

0E =f -V.(EV) - V.PV (5)0it

Here E = P/(y - 1) + (1/2) pV 2 is'the total energy and V (where V = iU + jV), P, p and y

are the fluid velocity vector, pressure, total mass density, and the ratio of the specific heats,

respectively. To compute the mixing (as a result of convection), each of the two streams is

convected separately, allowing us to calculate the mixing in any given computational cell. This was

done by considering the conservation equations for individual species densities for the upper and

lower streams.

The equations are solved using the nonlinear, high-order, explicit, compressible finite-

difference FCT algorithm (Boris and Bookl 6 ). Through a two-step predictor corrector scheme,

FCT ensures that all conserved quantities remain monotonic and positive. First, it modifies the

linear properties of a high order algorithm by adding diffusion during convective transport to

prevent dispersive ripples from arising. The added diffusion is then removed in an antidiffusion

phase of the integration cycle. Hence these calculations maintain the high order of accuracy without.

requiring artificial viscosity to stabilize the algorithm. The algorithm has been extensively tested

and used in the last ten years (see, for example bibliography in Oran and Borisl 7 ) to predict a wide
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variety of reactive and nonre.active flows. The explicit FCT algorithm was used (Oran et al. 18) to

investigate the properties of condensational instabilities in solar and astrophysical plasmas. Growth

rates, decay rates and oscillation frequencies of the perturbations determined from the linear analysis

were in excellent agreement with the simulations. In addition, the FCT algorithm has been used for

the analysis of a variety of plasma and fluid dynamic instability problems[ 19,201 . Employing the

FCT algorithm, Grinstein et al.2 1-22 calculated the vortex dynamics and asymmetric mixing in

compressible subsonic plane and axisymmetric shear layers in both two and three dimensions.

Also using this algorithm, Kailasanath et al.2 3 have calculated the behavior of cold and chemically

reacting axisymmetric confined jets. The present calculations were carried out using the code

LCPFCT which uses the most recent one-dimensional version of Flux-Corrected Transport

technique with fourth-order accurate phases and minimum residual diffusion. A timestep-splitting

technique is used to couple the two dimensions. The calculations are vectorized to take full

advantage of the architecture of the CRAY-XMP supercomputer used for the calculations.

No explicit subgrid turbulence model was included. However, there is an effective filter

for high frequencies which is part of the nonlinearity of the FCT algorithm. The filter does not

affect the large-scale structures, but ensures that wavelengths smaller than a few computational cells

are numerically diffused. Thus, provided that the computational gtid is fine enough to resolve the

large-scale features of the flow, the residual numerical viscosity of the algorithm mimics the

behavior of physical viscosity at high Reynolds number by damping small-scale structures on the

order of a few computational cells. There are essentially no viscous effects at scales greater than

four or five computational cells.

A 25 cm x 3 cm ( X x Y ) computational domain was considered for the majority of the

cases studied. The splitter plate was located symmetrically between the confining walls. The two

streams are ideal gases (air) with constant specific heats. Inflow and outflow boundary conditions
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must be used to represent the effects of the outside world on the computational domain. Ideally,

such boundary conditions would not allow unphysical reflections or wave absorption at the

boundaries of the computational domain. Imposing such boundary conditions is difficult

numerically and is currently the topic of a great deal of numerical analysis research.This difficulty is

most evident in numerical simulations of subsonic flows, but it is not such a major problem in

supersonic flows. The inlet conditions of the dependent variables were specified. Zero-gradient

outflow conditions (at X = L) were used for all variables. The top and bottom of the computational

region (Y = 0 and H) are perfectly reflecting hard walls. A 191 x 61 (X x Y ) uniform grid was

used for most of the calculations reported. The mesh was uniform in order to ensure that

downstream and deflected structures were well resolved. A series of calculations were performed

where the inlet Mach numbers, velocity , pressures and densities of the two streams at the inlet

were systematically varied. Extended domains with the same grid density 40 cm x 3 cm and 40

cm x 5 cm and denser-grid calculations (382 x 122 and 382 x 61) on the same 25 cm x 3 cm

domain were also performed for a specific base case. The Courant. number was held at 0.5 to

insure numerical stability and to resolve the time evolution properly. This condition was based on a

velocity equal to sound speed plus flow speed characteristic of the faster stream.

The boundary layers and the actual velocity profiles on the splitter plate are important

parameters since they provide a characteristic transverse length scale for the shear-layer instability.

Since different experimental set-ups have different boundary layers and velocity profiles developing

on the splitter plate the characteristic length scale 00 (the initial momentum thickness) can vary

from one set of experiments to another. Our calculations were started with a step-function velocity

profile (with a slope AUIAY where AU = U 1 - U2 and AY is the cell width in the Y direction)

across the shear layer, i.e., an infinitesimally thin vortex sheet spanning the whole domain, from

the trailing edge of the splitter plate up to the right boundary. These profiles smooth out during the

initial timesteps and relax to a shear-layer profile with an effective initial momentum thickness 00'.
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As found in experiments, 0o can vary among different simulations performed for example, using

different algorithms. Therefore it is important to characterize the relevant lengthscales in either

calculations or experiments. Earlier calculations using the approach adopted in this paper have

shown that a step-profile for the inlet velocity produces an estimate of 0' as one or two cell-width

in the cross stream direction9 . Our present calculations also support this observation, which means

that we can determine an effective initial momentum thickness by setting the grid spacing.

The small perturbation which initiates the transition from laminar to transitional flow

occurs at the first time step of the calculations. The perturbation generates small pressure gradients

and diffuses vorticity at the shear layer, near the edge of the splitter plate. Due to the smoothing of

the initial step-function profile, the initially uniform pressure field (for equal pressure cases)

develops a small gradient across the thickening shear layer in the region close to the edge of the

splitter plate where the fie streams meet. This disturbance moves downstream as the integration

proceeds, generating the transverse flows which trigger the instability.

The numerical simulations predict values of the density, momentum, energy and

number-density ratio for each of the computational cells as a function of time. The evolution of the

flow is shown through sequences of contours of number-density ratio, where

R= N 1 / (N1 + N2 )

The N1 and N2 are the number densities corresponding to the top and bottom inflowing streams.

The value of R varies between 0 and 1; a value of 0 corresponds to 100% of the bottom stream and

a value of I corresponds to 100% of the top stream.

Kailasanath et al.2 3 have shown that the peaks in velocity- and pressure-fluctuations

spectra taken at fixed locations can be related to the organization and coherence in the flow. The

fluctuations at a given location reflect the local passage of large structures as well as information
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about events at other locations of the flow transmitted by sound waves, such as vortex mergings

that generate fluctuations in compressible flows. A strong narrow spectral line usually indicates that

a structure passes the location at a very regular interval. We have therefore performed fourier

analysis of pressure and velocity fluctuations at selected positions in the computational domain to

help determine the organization and coherence in the flow.

IV. RESULTS and DISCUSSION

The computations performed are divided into three broad categories:

1. Both streams are at the same pressure and are supersonic as they pass the tip of the splitter plate.

Calculations were performed by either keeping the density uniform and varying the velocity ratios

or by maintaining the velocity ratio constant and varying the density ratios.

2. Both streams are at the same temperature and supersonic at the inlet, but the pressures of the two

streams at the inlet are different. Both underexpanded and overexpanded cases were considered.

3. Both streams are at the same pressure and temperature, but the upper stream is supersonic and

the lower stream is subsonic.

The convective Mach number, Mc , as obtained by equation (2) was computed for each case and are

reported with the inlet parameters.

1.) Equal-Pressure Streams

a. Uniform densit

The convective Mach number and the velocity ratios were systematically varied by

decreasing the Mach number of the lower stream , M2, while keeping the Mach number of the

upper stream, Ml, constant. Conditions for the base case are given in Table I. For these

conditions, the value of Mc is directly proportional to (M1 - M2), so that Mc = 1.25.
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Figure 2 shows the contours of the mixing ratio R within the computational domain at a

sequence of times corresponding to 8.6 ps intervals or 50 time steps, at a range of time well past

the initial stages of the development of the flow in the calculations. The shear layer initially

becomes unstable at approximately 9 cm from the tip of the splitter plate. Subsequently coherent

structures develop and move downstream. The paths of some of these organized structures in the

figure show that there is merging indicating that the convective velocities of all the structures are

not the same. The convective velocities of these structures (as computed from Figure 2)

significantly differ from the (theoretical) value of Mc = 1.25. For instance, the convective velocity

of a typical structure, the one at the left undergoing merging with a smaller structure, was

11.6 x 104 cm/s which gives Mc,j = 0.67 and Mc,2 = 1.83. As expected, this does not agree

with predictions of the the isentropic model The above results are, however, consistent with the

recent experimental observations by Papamoschou9 .

Figure 3 shows the density contours of the flow field at the end of time step

4000. The density field remains uniform until the shear layer becomes unstable. A system of

oblique shock waves is observed attached to the large structures in the lower half of the domain

where the computed Mc,2 = 1.83. The evolution of the flowfield shown in Figure 2 can be related

to the fourier analysis of the pressure and velocity fluctuations observed at specific downstream

locations in the computational domain. In Figure 4 we show the spectra of the transverse velocity

and pressure fluctuations at the point (18.75 cm, 2.0 cm), indicated by an "X" in Figure 1. The

location was chosen after sample calculations were made and regions with distinctive structures

were identified. Both the pressure and velocity fluctuations show a dominant frequency of 30 kHz,

corresponding to the passage of the structures shown in Figure 2. The fourier analyses do not

show strong specific subharmonics signifying that the passing structures do not merge in any

clearly synchronized way.
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Table 1. Base case conditions

1 2

p 1.17 x 10-3 gm/cm 3  1.17 x 10-3 gm/cm 3

T 300K 300K

P 1.01 x 106 dynes/cm 2  1.01 x 106 dynes/cm 3

U 13.95 x 104 cm/s 5.22 x 104 cm/s

M 4.0 1.5

Figure 5 compares contours of the mixing ratio R at timestep 4000 for calculations in

which M2 was gradually increased, M2 = 2.0, 3.0, and 3.5. The value of M1 and all other

conditions were kept the same as the base case, which resulted in Mc = 1.0, 0.5, and 0.25 and

velocity ratios U IU2 = 2.0, 1.33, and 1.13, respectively. The contours of R show that as the

velocity ratio decreases, the shear layer spreads less and becomes unstable further downstream, a

result also seen in subsonic shear layers . The spectra of the pressure and velocity fluctuations

become noisier as Mc and the velocity ratio decrease with a proliferation of peaks between 40 kHz

and 80 kHz range in the spectrum.

Calculations were also carried out with M1 decreased to 2.5 and M2 remaining the same

as in the base case. This corresponds to a velocity ratio UI1U2 = 1.66 and Mc = 0.5. The contours

of R, shown in Figure 6 at the end of timestep 4000 , show a very stable shear layer with no
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convective mixing. The slight spread in the shear layer is caused by the small though nonzero

residual numerical diffusion associated with the finite-difference scheme. Figures 5(b) and 5(c)

show that the shear layer becomes unstable in the same computational domain for cases where the

velocity ratio Ul/U2 is lower than 1.66. In particular, the value of Mc is same for cases shown in

Figures 5(b) and 6. However, Mi = 4.0 and M2 = 3.0 in Figure 5(b) while the corresponding

values in Figure 6 are 2.5 and 1.5 respectively. Since the calculations were carried out without any

forcing, the pressure fluctuations are unable to trigger the Kelvin-Helmholtz instability within the

length of the computational domain in Figure 6. Guirguis et al. 1 have shown earlier that an

unforced supersonic shear layer, that appears stable in a short computational domain, may

eventually become unstable further downstream.

To study the flow in a longer domain, the following cases were considered with the inlet

conditions identical to the base case. First, the computations were carried out on a domain with

dimensions of 40 cm x 3 cm with a 300 x 61 grid. This gave the same grid density as in the base

case but the domain is 15 cm longer. Figure 7 depict the contours of R for this case at the end of

time step 4000. Here the growth of the naturally unstable shear layer was obstructed downstream

by the walls. The domain dimensions were then increased to 40 cm x 5 cm with a 300 x 101 grid

to keep the same grid density. Figure 8 shows contours of the mixing ratio R within the

computational domain at a sequence of times for the extended domain. As in Figure 2, the frames

in Figure 8 are 8.6 Ips apart which corresponds to 50 timestep intervals. As in the base case, the

instability is triggered near 9 cm. However, the mixing increases substantially in the extended

length of the domain. The slight differences in the contours in the first 25 cm of Figure 8 and

Figure 2 are attributed to the different heights of the confining chambers, which in turn impose

slightly different acoustic properties on the system. The computed velocities for Mc, 1 and Mc,2

(for a typical structure) were close to those found from Figure 2. These calculations also show that

in this study, the location of the outflow boundary has little effect on the flow field predictions
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upstream.

For simulations performed by nonlinear monotone methods such as FCT, the residual

numerical diffusion is finite but very low. Hence for simulations that do not include an explicit

model for physical viscosity or for which the physical viscosity is less than the numerical viscosity,

the effective Reynolds numbers for various sized structures in the flow are determined by the mesh

size. Because of this inherent nonlinearity of the method, the effective Reynolds number varies

according to the size of the structure resolved relative to the mesh spacing. For example if a

structure is resolved by twenty computational cells, the effective Reynolds number is very high and

the flow is essentially inviscid for this structure. If the structure is resolved by three cells, the

effective Reynolds number is low and the structure can be dissipated. The nonlinearity of the

method means that the progression to increased effective Reynolds number is faster than linear.

Thus when mesh size is decreased, small-scale structures of the flow are resolved as long as the

physical viscosity is less than the numerical viscosity. For larger mesh size, the small scales are

filtered out. In order to study the effects of grid size and the inlet velocity profile on the solutions,

the base case calculations were done with different computational grids, viz. 382 x 61 (twice as fine

in the X direction) and 382 x 122 (twice as fine in both X and Y directions). Contours of mixing

ratio R at the end of timestep 1000 is shown in Figures 9(a) and 9(b) for the base case (191 x 61)

and for the 382 x 61 grid respectively. For these two cases, the inlet velocity profile ( and hence

Oo') is identical as the cross stream cell width is the same. Though the essential large scale features

shown in the two figures are similar, more small-scale structures are found in Figure 9(b) due to the

finer grid size in the X direction only. Figure 9(c) shows the mixing contours obtained with a grid

of 382 x 122 at the same physical time and precisely the same inlet velocity profile considered in

Figures 9(a) and 9(b). Due to the doubling of the grid in the Y direction, AY is half the size used in

the above cases. The inlet velocity profile was, however, spread linearly across two cross stream

cells so that it was identical to those applied for Figures 9(a) and 9(b). The agreement between the
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predictions shown in Figures 9(a) and 9(c) is good. As the solution progressed in time, the

similarities of the above predictions became less evident due to the effective filtering of high

frequencies. The filter does not affect the large-scale structures, but ensures that wavelengths

smaller than a few computational cells are numerically diffused. It is, however, evident that the

shape of the inlet profile plays a key role in the development of the instability and for the present

calculations, the large-scale structures are essentially grid independent.

Predictions were also obtained with the 382 x 122 grid where the inlet velocity profile

was across one cross stream cell only. Figures 10(a) and 10(b) compare the contours of R with

the denser grid (with the above inlet velocity profile) to those of R for the base case at the same

physical time. Note that because 60' is halved, the physics of the two flows is different. In the

denser-grid case, the mixing instability occurs at a shorter downstream distance, about 4.5 cm

from the trailing edge of the splitter plate, compared to the base-case prediction where the instability

is triggered near 9 cm . However, there is a physical similarity in the two solutions: the flow

structures in the first half of Figure 10(a) look very much like those in Figure 10(b), only half the

size. The shedding frequencies computed by the fourier analyses of the pressure and velocity

fluctuations (as shown in Figure 11) were approximately twice the corresponding shedding

frequencies predicted in the base case. The similarity in the solution of equations is consistent with

the fact that 0o' was reduced by reducing the cross stream cell width.

b. Constant Velocil Ratios

For the equal-pressure cases, the density ratio was varied by changing the temperature

ratios of the two streams but keeping the velocity ratios constant. The velocities of the upper and

lower streams were U1 = 8.71 x 104 cm/s, U2 = 5.22 x 104 cm/s respectively, so that U1 /U2

- 1.66. Results were obtained for two situations, one in which the faster stream is four times
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denser than the slower stream (Pl /p2 = 4.0 and Tl/T2 = 1/4 ) and the other in which the faster

stream is four times lighter than the slower stream (Pl /p2 = 1/4 and Tlfr2 = 4.0 ). For the

case where the faster fluid is denser, Ml = 5.0 and M2 = 1.5, and for the case where the faster

fluid is lighter, MI = 2.5 and M2 = 3.0. It is interesting to note that for both of these cases, Mc=

0.67.

The instantaneous contours of R for the two cases described above are shown in

Figures 12(a) and 12(b) at the end of time step 4000. Due to the temperature changes in the streams

due to density differences, the time steps must be slightly different to satisfy the imposed Courant

number condition for stability and accuracy. The case where the faster fluid is lighter (hotter), is

found to be stable and no convective mixing occurs. However, significant mixing occurs when the

faster fluid is denser (colder) and here the contours of R show organized structures.

It has been shown from linear theory that the effect of temperature differential is different

for subsonic disturbances as opposed to supersonic disturbances (Gropengiesser 2 4 , Ragab and

Wu7 ). Brown and Roshko2 investigated the density effects in subsonic turbulent mixing layers.

According to this study, when the faster stream is denser (U1/U2 = 17 and Plp2 = 7), decreased

spreading of the shear layer was observed compared to the case where the faster stream is slightly

lighter than the slower stream (UI/U2 = 1'7 and pi/p2 = 0.965). Our present results for the

supersonic shear layer and the observations by Brown and Roshko for the subsonic shear layer are

thus consistent and agree with the predictions by the linear theory.

2. Uded and Overeaded Case

When the pressures of the two streams are different, the high-pressure stream expands

through a rarefaction fan centered at the tip of the splitter plate while the low-pressure stream is
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compressed to the same pressure through an oblique shock wave also attached to the tip of the

splitter plate. The actual flow parameters affecting the properties of the shear layer are the values

ahead of these waves. The conditions ahead of the shock or rarefaction waves that form for the

overexpanded and underexpanded cases will be denoted by I' and 2' for the top and the bottom

streams, respectively, as was done in Guirguis et al.1 .

Figure 13 shows the density contours in the computational domain at a time step 4000 for

an underexpanded case where P1 
= 2.02 x 106 dynes/cm2 , P2 = 1.01 x 106 dynes/cm2 and Pl

= 2.34 x 10- 3 gm/cm 3 , P2 = 1.17 x 1- 3 gm/cm3 . The remaining parameters are identical to

those shown in Table 1. For this case, the temperatures of the two stream at the tip of the splitter

plate are equal (300 K). As a result of the pressure difference, the shear layer turns 4.50 towards

the lower wall. The higher pressure flow on top expands through a rarefaction fan centered at the tip

of the splitter plate to a pressure Pl' = 1.232 x 106 dynes/cm 2 , while the lower pressure, slower

flow compresses through an oblique shock wave to the same pressure P2' = 1.232 x 106

dynes/cm 2 . Ahead of the rarefaction fan, MI' = 4.38, T1 ' = 263.2 K and pl = 1.676 x 10- 3

gm/cm 3 . Ahead of the shock wave, M2' = 1.373, T2 ' = 308 K and p2' = 1.32 x 10-3 gm/cm 3 .

The (isentropic) convective Mach number at the above conditions is Mc = 1.36. The density

contours illustrate the interaction between the reflected rarefaction and shock waves at the walls and

the shear layer. The oblique shock wave starting at the splitter plate reflects from the bottom wall.

When the shock intersects the shear layer, it is partially transmitted and partially reflected due to the

higher density of the top layer. This produces a perturbation that triggers the Kelvin-Helmholtz

instability. Further complex interactions of the walls with transmitted and reflected shocks occur

in the downstream flow.

Figure 14 shows the contours of R at a sequence of times. As in Figure 2, each frame

in Figure 14 is 8.6 pas apart which corresponds to intervals of 50 time steps. The time sequences of
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R exhibit enhar -ed mixing and organization of the structures compared to those shown in Figure 2.

This is perhaps due to the presence of shocks in the vicinity of the splitter plate which perturbs the

shear layer. The process of merging is indicated by the two dashed lines coming together at step

4250. The computed values of Mc, l and Mc,2 for the structure at the left undergoing pairing in

Figure 13 are 0.918 and 2.22 respectively as opposed to the theoretical value of Mc = 1.36.

Since Mc,2 > 1.0, oblique shocks waves are thus found in the lower half of the computational

domain in Figure 13.

In Figure 15 we show the spectra of the transverse pressure fluctuations at 18.75 cm

from the left boundary and 2.0 cm from the lower wall. Comparing the results to those in Figure

4(b) show that a second strong peak appears in the pressure fluctuation spectrum reflecting the

more organized merging process seen in Figure 14.

In order to investigate further the effects of underexpansion and overexpansion on the

mixing behavior, the inlet parameters for the case shown in Figure 6 (that exhibited little convective

mixing) was considered. Both underexpanded (PI/P2 = 2.0, Pl/P2 = 2.0) and overexpanded cases

(Pl/P2 = 0.5, pl/p2 = 0.5) were considered. For both cases, M I = 2.5 and M2 = 1.5 and T =

T2 = 300 K. Figures 16(a) and 16(b) show the contours of R at a given time (timestep 4000) for

the underexpanded and the overexpanded cases. For the underexpanded case, the shear-layer

deflection is 6.00 while in the overexpanded cases, the deflection is about 50 . These cases show

that both underexpansion and overexpansion enhance mixing compared to the equal-pressure case

shown in Figure 6. However, convective mixing in the overexpanded case is significantly less than

the underexpanded case where the inlet temperatures of the two streams are the same. Both cases

show organized large-scale mixing and the structures appear similar in shape to those observed in

subsonic shear layers. The shear layer becomes unstable near 15 cm from the trailing edge (for the

underexpanded case) of the splitter plate. The velocity and density ratios in the shear layer
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immediately ahead of the shock and the rarefaction waves are U I/U2 = 1.96 and PI'/ P2' =

1.26 for the underexpanded case and UI'IU2' = 1.45 and pI'/ p2' = 0.81 for the overexpanded

case.

3. SuRMhron-Subsonic Inteactions

A number of experimental studies have been performed where a supersonic flow meets

subsonic flow at the trailing edge of a splitter plate 3, 4. In this section, the results of a limited

computational study carried out on confined shear layers formed by a supersonic and a subsonic

stream are reported. The mathematical formulation and the boundary conditions were identical to

those reported in an earlier section. The computational domain and the grid sizes were also similar

to those used in the base case reported earlier. Two cases were considered for which where the inlet

Mach number of the slower, subsonic stream was held at M2 = 0.5. For the supersonic stream,

inlet Mach number values of M1 = 1.5 and 2.5 were used. For both streams, inlet pressure and

density were 1.01 x 106 dynes/cm2 and 1.17 x 10-3 gm/cm3 , respectively. The convective Mach

number, Mc for the first case is 0.5 and for the second case is 1.0.

Figure 17 shows the contours of R within the computational domain at a sequence of

times 17.2 ps apart corresponding to 50 timestep intervals for the case where M1 = 1.5. The shear

layer remains stable for most of the length of the computational domain and then rolls up in a

fashion characteristic of subsonic shear layers. It is of particular interest to compare these results

to those shown in Figures 5(b) and 6. In each case, Mc = 0.5 and density ratios are the same. The

velocity ratios (Ul/U2) are 1.37 in Figure 5(b), 1.66 in Figure 6 and 3.0 for the present case. The

computed values of Mc, and Mc,2 for a typical large structure (as shown by the dashed line in

Figure 16) is found to be 0.31 and 1.05 respectively. Thus even for supersonic-subsonic

interactions, the convective Mach numbers for the upper and lower stream are quite different from

20



the theoretical value.

In Figure 18 we show the spectra of the pressure fluctuations for this case again at

(18.75 cm, 2.0 cm). Prominent peaks are observed near 20 kHz and in addition, there is a

subharmonic indicating pairing . Note that for cases where both streams are supersonic, the peaks

are clustered near 30 kHz. The difference is attributed to the existence of the subsonic stream and

acoustic interactions. As the Mach number difference and the convective Mach number are

increased ( MI = 2.5 and M2 = 0.5) , the point of instability is found to shift further downstream.

The mixing between the two streams also deeases within the length of the domain considered. The

structures in this case did not exhibit features similar to those found in subsonic shear layers.

Further work (with improved outflow boundary conditions) needs to be done for characterizing

subsonic-supersonic shear layer.

V. CONCLUSIONS

This paper has presented numerical simulations of time-dependent two-dimensional

unforced supersonic shear layers for a splitter-plate geometry. The calculations were performed

using the Eulerian explicit Flux-Corrected Transport algorithm to solve the convective transport

problem. The natural instability of supersonic shear layer was investigated by systematically

varying the velocity, pressure, and density ratios of the two streams while keeping the effective inlet

momentum thickness constant.

The supersonic shear ayers were found to be naturally unstable and to have well-defined

large structum. The organization and coherence of the structures deteriorates as the absolute Mach

number of the streams increases and the Mach number difference between the stream decreases. For
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equal pressure and equal density streams, the mixing depends on the Mach number difference as

well as the Mach number of the faster stream. In this case, mixing decreased with decreasing

convective Mach number, Mc.

The most amplified frequency obtained by the fourier analysis of the velocity and

pressure fluctuations depends on the effective inlet momentum thickness ( the cell-width in the

cross-stream direction). For the inviscid calculations presented with a step-function inlet velocity

profile, the cell width in the cross-stream direction provides a length scale similar to the initial

momentum thickness of the shear layer. The most-amplified frequency did not depend on other

parameters like pressure and density rtios in the shear layer.

The mixing behavior of the unforced supersonic shear layer could not be uniquely

described by the convective Mach number as derived from the isentropic model 3 . Even with the

same velocity and density ratios, different shear layers with the same convective Mach number

show different natural instability characteristics. Convective velocities Mc,1 and Mc,2 were

computed from the predictions and were compared to the (isentropic) theoretical value: they were

found to be very 4fferent. This finding is in agreement with the recent experimental

observations by Papamoschou9 . The present results and the experimental observations 9 contradict

the current isentropic model of the structures which predicts Mcl and Mc,2 to be equal or very

close.

Differences in pressure across a supersonic shear layer also enhance the convective

mixing. When the walls are close, shock waves originating at the tip of the splitter plate reflect

from the nearest wall and intersect the shear layer before it goes unstable naturally. For

equal-temperature streams with the same Mach numbers, underexpansion causes better mixing than

overexpansion.
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For equal-pressure streams, mixing is enhanced when the faster stream is denser

(cooler). This was found by simulating equal-pressure shear layers with identical velocity ratios but

different density and temperature ratios. It is interesting to note that Brown and Roshko 2

discovered the opposite trend for subsonic mixing layers. This difference for subsonic and

supersonic shear layer has been also confirmed by the linear theory[7,24].
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Figure 1: Schematic of the problem geometry
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Figure 2. Contours of mixing ratio R from 0.01 to 0.99 at a sequence of time steps for the
base case.
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Figure 3. Density contours from 2.15 x I0-4 gm/cm3 to 2.15 x 1 gm/cm 3 for the base
case at the end of time step 4000.
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Figure 4. Frequency spectra in the shear layer for the base case at the location 18.75 cm (X),

2.0 cm (Y)
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(c) M= 4.0, M2 3.5, Mc = 0.25

Figure 5. Contours of mixing r'aio R from 0.01 to 0.99 at the end of lime step = 4000 for

P1 = P2 
= 1.01x 0 dynes/cm 2 , Pl = P2 = 1.17 x 10"3 gm/cm3.
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0.0 0.0 X cm 25.0
Figure 6. Contours of mixing ratio R from 0.01 to 0.99 at the end of tirpe step = 4000.

where M 1 = 2.5, M2 = 1.5, Mc = 0.5, P1 = P2 = 1.01 x 10 0dynes/cm2 ,

PI = P2 = 1.17 x 10-3 gm/cm 3

3.0

0.00
0.0 c 40.0

Figure 7. Contours of mixing ratio R from 0.01 to 0.99 at the end of time step =
4000 in a 40 cm x 3 cm domain. Inlet conditions are as given in Figure 2
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Figure 8. Contours of mixing ratio R from 0.01 to 0.99 ac a sequence of time steps in a 40 cm
x 5 cm domain . Inlet conditions are as given in Figure 2
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(a) 191 x 61 grid; time step =1000
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(c) 382 x 122 grid; time step = 2000

Figure 9. Contours of mixing ratio R from 0.01 to 0.99 at a given instant with different grid
densities. Identical inlet velocity profile for each case.
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(b) 191 x 61grid; time step=4000

Figure 10. Contours of mixing ratio R from 0.01 to 0.99 at a given instant with
different grid densities. Wnet velocity profiles are different for the two cases.
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Figure 11. Frequency spectra in the shear layer for the denser grid calculation at the location
18.75 cm (X), 2.0 cm (Y)
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(a) MI = 5.0, M2 = 1.5, Mc = 0.67, P1 = P2 =.1.01 x 106 dynes/cm 2 ,

p I = 4.68 x 10-3 gm/cm 3 , P2 = 1.17 x 10-3 gm/cm3

3.0

S

0.0 0.0 25.0

X cm

(b) M1 -- 2.5, M2 = 3.0, Mc = 0.67, P1 = P2 = 1.01 x 106 dynes/cm 2 ,

pl- 1.17x 10- 3 gm/cm 3 , P2 =4.68x 103 gm/cm 3

Figure 12. Contours of mixing ratio R from 0.01 to 0.99 at a given instant

(time step -4000) for the same velocity ratio but different density ratios.
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0.0 X CM25.0

Figure 13. Density contours from 1.0 x 10- 3  to 4.0 x 10- 3 gm/cm 3 for an

underexpanded case where MI = 4.0, M2 = 1.5, Mc = 1.36, P1 = 2.02 x 106

dynes/c m 2 , P2 = 1.01 x 100 dynes/cm 2 , pl = 2.34x 1 gm/cm 3

and P2 = 1.17 x I0-3 gm/cm 3 at the end of time step 4000.
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Figure 14. Contours of mixing ratio R from 0.01 to 099 at a sequence of timne steps for the

case shown in Figure 13)
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Figure 15. Frequency spectra in the shear layer for pressure fluctuations the case (shown in
Figure 13) at the location 18.75 cm (X), 2.0 cm (Y)
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(a) Underexpanded case where MI = 2.5, M2 = 1.5, Mc = 0.633, P I = 2.02 x 106

dynes/cm 2, P2 = 1.01 x 106 dynes/cm2 and P, = 2.34 x 10-3 gm/cm 3, P2 ;
1.17 x 10-3 gm/cm 3

3.0

0.0 3.0 25.0
X cm

(b) Overexpanded case with M1 = 2.5, M2 = 1.5, Mc = 0.369, P1 = 2.02 x 106

dynes/cm 2 , P2 = 1.01 106 dynes/cM2 , and P, = 2.34 x I0-3 gm/cm 3, p. =
1.17 x 10-3 gVcm3

Figure 16. Contours of mixing ratio R from 0.01 to 0.99 at a given instant
(time step --4000) for under and overexpansion.
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Figure 17. Contours of mixing ratio R from 0.01 to 0.99 at a sequence of time steps fora
supersonic-sboi case where Ml = 1.5, M2 = 0.5, Mc = 0.5,
PI=P2=1.01 x00dynes/cm2 , P 1P2 1. 17 x10-3 gncm3
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Figure 18. Frequency spectra in the shear layer for the pressure fluctuations for the case (shown
in Figure 16) at the location 18.75 cm (X), 2.0 cm (Y)
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